
Towards Interprocess Communication and Interface Synthesis for a
Heteogenous Real–Time Rapid Prototyping Environment�

Franz Fischer Annette Muth Georg F¨arber
Laboratory for Process Control and Real–Time Systems, Prof. Dr.–Ing. Georg F¨arber

Technische Universit¨at München, Germany
fFranz.Fischer,Annette.Muth,Georg.F̈arberg@lpr.e-technik.tu-muenchen.de

Abstract

Rapid Prototyping has been proposed as a means to re-
duce development time and costs of real–time systems. Our
approach uses a heterogeneous, tightly coupled multipro-
cessor system based on off–the–shelf components as target
architecture for an executable prototype, which is gener-
ated from the specification in an automated design process.
Here, too, we aim to use existing tools and languages. But
interface and communication synthesis, while being the key
requirement of an automated translation of a abstract spec-
ification to a distributed system, is not yet state–of–the–art.
The sensitivity of the overall performance of multiproces-
sor systems to overhead and latency introduced by com-
munication on the other hand calls for an efficient inter-
process communication (IPC). This paper presents concept
and implementation of IPC functions which, implementing
the message queue semantics of the specification language
SDL, links the standard components of our multiprocessor
system in an efficient manner, while at the same time pro-
viding the interface synthesis needed by the automated gen-
eration of a rapid prototype. The experiences gained when
implementing a non–trivial, real–world CAN controller and
monitor application on our rapid prototyping environment,
are described as a first proof of concept.

Keywords: communication synthesis, rapid prototyping,
SDL, hard real–time, task classification model;

1. Introduction

The aim of rapid prototyping real–time applications is to
substantially reduce development times by confirming the
functional and timely requirements of the application at a
very early stage of development with the help of an exe-
cutable prototype.

�The work presented in this paper is supported by theDeutsche
Forschungsgemeinschaftas part of a research programme on “Rapid Proto-
typing for Embedded Hard Real–Time Systems” under Grant Fa 109/11-1.

100

Class 2: Standard Real-Time Tasks2

4 Class 4: Special Purpose Functions

time [s]
response
maximum

Class 1: Primary Response Tasks

4

[Instructions]
Complexity

10
0

1

3

Class 0: Hardware Tasks

2

0

1 1000 MIPS10

0

1

10
10

8
10

6

3 Class 3: Computation Intensive Tasks

10

10

10

10

10

10

-9

-8

-4

-2

-6

1

10 10 10 10
0 2 4

Figure 1. Classification of application tasks

When the real–time application hashard deadlines, the
focus of the development lies not only on the functional cor-
rectness of the system, but also on the proof that it will meet
all its deadlines. A real–time analysis that is able to deliver
this proof needs the worst case execution times (WCETs) of
the implementation.

Our rapid prototyping target architecture REAR
(Rapid Prototyping Environment for Advanced Real-Time
Systems) was designed to support real–time analysis in
guaranteeingrealistic, not–too–pessimistic worst–case ex-
ecution times. The basis for this is the task classifica-
tion model presented in [3], where each type of real–time
task corresponds to a best suited processor type, in terms
of performance and deterministic execution times. It is
a configurable and scalable heterogeneous multiprocessor
system consisting of standard off–the–shelf components,
which are tightly coupled by a global PCI–Bus. The pro-
cessing units’ basic difference is the loss of predictable per-
formance caused by interrupts and context switches:

High Performance Unit HPU (Tasks Class 3):based on
standard computer architectures to benefit from tech-
nological advances, it is in our case a PCI slot CPU

CTRL

DPRAM

PCI

Ethernet
SCSI

CPU

DRAM

Cache

PCI

FPGA

Console

RTUCIOP

I/O other PCI device

SRAM

CPUPCI PCICPU

SRAM

global bus (PCI)

RTU

HPU

Figure 2. REAR hardware architecture

with Intel Pentium processor, large L2–cache and
memory. The impact of interrupts and context switches
on predictability is limited by software means.

Real–Time Unit RTU (Tasks Class 2,1):optimized for
small tasks with short response times, which do not
allow predictions of the cache behaviour. Instead,
the much slower RAM–access times have to be used
for the computation of WCETs. Our current RTU
is a MIPS R4600 based single board computer with
PCI–Interface and fast static RAM, running the freely
available light–weight kernel RTEMS.

Configurable I/O Processor CIOP (Tasks Class 0):
FPGA–based unit for tasks with deadlines too short to
be met in software. The implementation in hardware
allows a straightforward computation of the WCETs.
In our rapid prototyping application, the CIOP consists
of one Xilinx FPGA and additional Dual Ported RAM.
It serves two purposes: It acts as a “event–filter” for
events with short deadlines, and it links the rapid
prototyping platform to the embedding process in a
configurable manner.

Design Process To allow a schedulability analysis of the
resulting generated system in addition to the automated
transformation, our rapid prototyping design process re-
quires both, the specification of the systems behaviour as
well as a specification of the timing properties and con-
straints of the system’s embedding environment. The latter
is done with the help of event streams, their associated max-
imum response time and event interdependences [5], while
we use SDL for the functional specification. The specifica-
tion is followed by the allocation of the SDL processes to
the available processing units, according to the task classi-
fication model and based on the maximum response times
and an estimated computational complexity. After that, high
level language code is generated for the software and hard-
ware parts and communication and HW/SW interfaces are
synthesized, before the software parts are compiled and
linked for the respective processing unit and the hardware
parts synthesized for the FPGA–based CIOP(s).

Communication synthesis for distributed real–time sys-
tems has recently received considerable interest, e. g. [7,
1, 2]. While our approach does not claim the generality of
these systems — system architecture, bus topology and pro-
tocol are known after all — we need to achieve an efficient
solution for this particular environment and aim to reach the
higher degree of automation required by a rapid prototyping
system.

For code generation we decided to use existing tools:
SDT’s “C advanced” code generator for the SW side (map-
ping one SDL process in our case to an RTEMS task) and
the SDL–to–VHDL translator originally intended to support
hardware design on a high abstraction level [4]. As both
tools currently do not support mixed HW/SW systems, we
developed a concept to integrate them to a synthesis system
for our heterogeneous rapid prototyping target architecture
REAR.

The following section describes this approach and the
implementation of the underlying inter unit communication
methods. Section 3 summarizes the results of a case study
before the paper closes with conclusions and an outlook on
future work.

2. An Approach to Interprocess Communica-
tion and Interface Synthesis

A SDL specification consists of a set of processes
communicating via asynchronousSignalswhich optionally
carry arbitrary data andimportedor viewed variables. Pro-
cesses are specified as extended finite state machines. A
state transition is triggered and the according SDL state-
ments executed by the reception of a signal (INPUT) or
a boolean expression including imported/viewed variables
(so called continuous signals) or both (signal with enabling
condition). For the reception of signals, each process has
a private FIFO input queue, where signals may be sent by
other processes (OUTPUT).

2.1. SDT generated code

SDT supports code generation for the so called tight in-
tegration with a real–time operating system: A SDL pro-
cess and its input queue are implemented as one RTOS
thread and one RTOS FIFO message queue. INPUT and
OUTPUT statements are translated to macro calls which fi-
nally expand to the RTOS’s message queue receive and send
calls. Shared (exported/revealed) variables are mapped to
(buffered) global variables.

As stated above SDT does not directly support mixed
HW/SW systems: The usual way to handle HW parts is to
use one or more external tasks to do all the dirty work and
communicate with the SDL processes by sending/receiving
“hand coded” SDL signal structures. However, this and the

processes
SDL

processes

CIOPRTUHPU

PCI
REAR

Process
Mapping

Signal +
Implementation

SDL

Description

HW

Library
RTEMS RTOS

Partitioning

Library (C)
RP Queue RP Queue

SDL
processes

Signal Mapping
+

Signal Converters

Library (VHDL)

Signal Impl. (VHDL)
Signal Map +

Converters (C)

Synpsis, XAct
Libraries

Signal Map +

SDL-to-VHDL
Translation

Synopsis,
XActPreprocessing,

Compilation,
Linking

SW

Figure 3. Integrating available code genera-
tors to a synthesis system

macro based code forms the path to an integrated HW/SW
synthesis system (see below).

2.2. SDL–to–VHDL translator

The tool translates each SDL process to a VHDL entity
based on configurable VHDL code fragments. For generat-
ing synthesizable VHDL code for asynchronous SDL sig-
nals, the translator needs as inputs a set of signal imple-
mentation descriptions (VHDL procedures) and a library of
protocol descriptions (preprocessed to a VHDL package) in
addition to the SDL processes to generate code for. The pro-
tocol descriptions can be used to connect external compo-
nents or — as in our case — to implement the necessary in-
terfaces (signal queues, registers,. . .) to the software side.

2.3. Integration

Figure 3 gives an overview of the integrated synthesis
system. In addition to the set of application SDL processes
it requires information about the process mapping (HW/SW
partitioning), the mapping of signals at the HW/SW bound-
ary to a particular HW/SW queue, an implementation of
(optional) signal converter functions and the signal imple-
mentation and protocol descriptions required by the SDL–
to–VHDL translator. The signal mapping information is
necessary to generate for the software side

1. C macros to map local and remote SDL OUTPUT
statements to RTOS calls or the library routines (and
optionally signal converter) for inter unit communica-
tion, respectively,

2. an ISR to handle communication interrupts from re-
mote processing units, and

3. an initialization procedure for all necessary inter unit
queues.

For the hardware side the signal mapping information is
used to configure the HW/SW queue entities while the other
information is passed to the SDL–to–VHDL translator.

2.4. Inter–Unit Queue Implementation

The inter unit queue implementation is based on the
tight coupling of the target architecture’s processing units,
i.e. that communicating units share a common memory re-
gion. On REAR this can be e.g. a memory region accessible
through the PCI bus by another master capable processing
unit or the CIOP’s dual ported RAM. This common memory
region is used to implement FIFO queues (for SDL signals)
or for exported/revealed variables.

2.4.1 Software — Software

For communication between RTEMS threads on the RTU
and Linux processes on the HPU, a simple module for mes-
sage based IPC provides services to establish a communi-
cationqueueand to send messages to and receive messages
from the queue.The queue descriptor encapsulates informa-
tion concerning the sender and receiver threads or processes
and a pointer to a FIFO queue for the messages. The queues
are located within the RTU’s DRAM, which is accessible
by the HPU via PCI bus. A queue consists of thein and
out indices and, in the current implementation, a config-
urable fixed length message buffer array. A more flexible
alternative that requires less copy operations, but needs one
spinlock or semaphore for each thread, is a buffer pool with
linked lists queue, which will replace the fixed arrays in the
future.

The basic algorithm for receiving messages is as fol-
lows: queue_getmsg() checks whether a message is
available and if so, copies the message from the queue’s to
the thread’s message buffer and returnsTRUE. A receiving
thread will wait for a message to arrive and then notify the
remote side of the receive queue being not full by trigger-
ing an interrupt. queue_putmsg() performs the same
function vice versa. On the RTU, the queue ISR handles
the notifications from the HPU side and propagates them
as RTEMSeventsto any waiting thread, which in turn is
unblocked and re–checks its receive or send queue. On the
HPU, access to the queue memory area as well as triggering
and handling notification interrupts is supported by a UNIX
device driver.

2.4.2 Software — Hardware

A target architecture like REAR allows different implemen-
tation alternatives for FIFO queues for SDL signals:

1. for signals with no or only little data, short queues can
be realized as FPGA internal FIFO, with the head (or
tail) being accessible by a register;

2. larger FIFO queues make use of the CIOP’s dual
ported RAM and implement thein andout indices as
well as additional control and status flags in a queue
control and status register within the FPGA; (this al-
ternative is very similar to the software queue imple-
mentation described in Section 2.4.1);

3. implementing only one (set of) SDL signal data regis-
ter(s) is sufficient if either the interrupt latency on the
software side is short enough to avoid loss of a signal,
or signal data are transferred to a queue in main mem-
ory by bus mastering or direct memory access;

PROCEDURE send_canmsg (
SIGNAL clock, req, abort, done:

IN std_logic;
SIGNAL data: IN std_logic_vector(15 DOWNTO 0);
SIGNAL ack: OUT std_logic;
SIGNAL base: IN std_logic_vector(6 DOWNTO 0);
SIGNAL inidx: BUFFER std_logic_vector(3 DOWNTO 0);
SIGNAL offset: BUFFER std_logic_vector(2 DOWNTO 0);

) IS

BEGIN
offset <= "000"; dwrite <= ’0’;
send: LOOP

WHILE NOT (req=’1’ OR abort=’1’ OR done=’1’) LOOP
WAIT UNTIL clock’EVENT AND clock = ’1’;

END LOOP;
EXIT send WHEN abort=’1’;
IF done = ’1’ THEN

inidx <= inidx + "0001";
END IF;
EXIT send WHEN done=’1’;
daddr(13 DOWNTO 7) <= base;
daddr(6 DOWNTO 3) <= inidx;
daddr(2 DOWNTO 0) <= offset;
ddata <= data; dwrite <= ’1’; -- write data
WAIT UNTIL clock’EVENT AND clock = ’1’;
dwrite <= ’0’; ack <= ’1’; -- data written
WHILE NOT req=’0’ LOOP

WAIT UNTIL clock’EVENT AND clock = ’1’;
END LOOP;
ack <= ’0’;
EXIT send WHEN reset=’1’;
offset <= offset + "001";

END LOOP;
END send_canmsg;

Figure 4. VHDL procedure to “send” a CAN
message to a DPRAM queue

For the case study described in Section 3 the second al-
ternative has been chosen to implement a transmit and a
receive queue for CAN messages. Central elements on the
HW side are the queue control and status register (QCSR)
and the send_canmsg() and receive_canmsg()
VHDL procedures (Fig. 4). The QCSR holds the two queue
indices, a DPRAM base address,not–full and not–empty
status flags andclear, start and interrupt enablecontrol
bits. The VHDL procedures were coded according to the
protocol descriptions required later for the SDL–to–VHDL
translator.

For the SW side, library routines for enqueuing / de-
queuing messages (SDL signals) in / from DPRAM queues
have been implemented. The dequeue routine checks the
not-empty flag and if it is set, copies the message from the

global PCI busexpansion port
using theusing the RTU’s

CAN Monitor

CAN Panel

CAN bus

Control & Status

Message Router

HPU

Physical Layer

CAN Application

Data Link Layer

CIOP

data transmission

RTU

data transmission

Figure 5. Task allocation and communication
of the CAN application

DPRAM address given in the QCSR and increments theout
index and is typically called from the ISR. In contrast, the
enqueue routine is called by the SDL processes sending a
signal to the HW side.

3. Case Study: a CAN Monitor Application

As a test bed for the application to be implemented on
REAR, we built a CAN bus environment consisting of two
exemplary SLIO–based I/O–cards emulating sensors and
actors and two commercial CAN participants with moni-
tor and analyzing software. Details on the realized CAN
environment can be found in [6].

From the user’s point of view, the application performs
two functions: The CAN bus monitor allows the user to
send, receive and filter CAN messages, to monitor activity
on the CAN bus. The SLIO controller provides an interface
to the SLIO cards. The lower levels of the application have
to provide the distribution of CAN messages to and from the
CAN monitor and the SLIO controller (message routing)
and all functions of a fully functional CAN bus participant
[8]. The task classification model presented in 1 applied
to the identified functions yielded the task allocation shown
in Figure 5. The CAN application was modeled in SDL
— except for the graphical user interfaces implemented on
the HPU. The SDL process diagram is shown in Figure 6.
All software processes were implemented as RTEMS–tasks
using the described mechanism to include the appropriate
IPC–calls respectively RTEMS library functions. As the
SDL–to–VHDL translator was not available for this exam-
ple, the hardware process (can_controller) was spec-
ified in Statemate and translated to VHDL using Statem-
ate’s VHDL–generator. Together with the VHDL–part of
the HW–SW–interface, it was fitted to the FPGA.

The implemented system met all the requirements posed
by the planned CAN controller and monitor application, in
particular met all the deadlines of the CAN protocol up to
the maximum 1 MHz without message loss.

For a first evaluation of IPC performance, the queue
functions described above were instrumented to write time
stamps to a memory buffer. The timing test application
for the SW/SW communication included one Linux pro-

Block can_application 1(1)

SIGNAL
msg_rcvd_controller(CANMsg),
msg_to_send(CANMsg),
msg_to_send_controller(CANMsg
control(Bit_String),
config(Bit_String);

Can_port_out Can_port_in Slio_control Control

Transmit Slio_calibrate

Can_controller

from_panel

msg_to_send
to_panel

msg_rcvd

msg_to_send

msg_to_send

control,
config

msg_to_send

msg_to_send_controllermsg_rcvd_controller

Figure 6. SDL process diagram of the CAN
application

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

ex
ec

ut
io

n
tim

e
[µ

s]

message user data length [bytes]

RTEMS receive
RTEMS send

Linux receive
Linux send

Figure 7. performance of the simple message
queue implementation

cess to send a message to a RTEMS thread, which af-
ter being unblocked and receiving the message, sent the
unmodified message back to the now blocked Linux pro-
cess. I.e. the receive operations on both sides were blocking
and involved processing an interrupt and a context switch,
while the send could be performed without the sender being
blocked. Fig. 7 shows the measured (average) execution
times of thequeue_sndmsg() andqueue_rcvmsg()
calls on RTEMS and Linux, respectively.

Due to the similar implementation, the send opera-
tion from SW to HW is as fast asqueue_sndmsg()
on RTEMS, i.e. below5 �s. The opposite direction,
however, involves the ISR overhead and the call of
rtems_message_queue_send() and therefore takes
approximately20 �s.

4. Conclusions and Future Work

In this contribution we described concept and implemen-
tation of efficient IPC functions which are integrated in
the automated design process for a rapid prototyping sys-

tem. It is now possible to map a SDL specification of a
real–time system to a heterogeneous multiprocessor plat-
form without regarding the details of the underlying hard-
ware. Latency and overhead caused by the communication
are very low: The message queues between HPU and RTU
and between RTU and CIOP introduce latencies in the be-
low 20 �s–range. The next steps include integrating the
hardware part of the HW/SW queue interface functions with
the SDL–to–VHDL translator, and at the same time imple-
menting the HW/SW interface alternatives outlined in Sec-
tion 2 (DMA, internal FIFO). The degree of automation can
be further increased by an automatic configuration of the
message queues on the hardware side, which includes allo-
cation of SDL–signals to message queues and defining their
size depending on the data types to be transmitted.

References

[1] I. Bolsens, H. J. De Man, B. Lin, K. v. Rompaey, S. Ver-
cauteren, and D. Verkest. Hardware/software co–design
of digital telecommunication systems.Proceedings of the
IEEE, 85(3):391–418, Mar. 1997. Special Issue on Hard-
ware/Software Co–Design.

[2] J. Daveau, G. Marchioro, C. A. Valderrama, and A. A. Jer-
raya. Vhdl generation from sdl specifications. InProceedings
of the XIII IFIP Conference on Computer Hardware Descrip-
tion Languages, CHDL’97, Toledo, Spain, Apr. 1997.

[3] G. Färber, F. Fischer, T. Kolloch, and A. Muth. Improving
processor utilization with a task classification model based
application specific hard real–time architecture. InPro-
ceedings of the 1997 International Workshop on Real–Time
Computing Systems and Applications (RTCSA’97), Academia
Sinica, Taipei, Taiwan, ROC, Oct. 27–29 1997.

[4] W. Glunz. Hardware–Entwurf auf abstrakten Ebenen unter
Verwendung von Methoden aus dem Software–Entwurf. Dis-
sertation, Fachbereich Mathematik/Informatik, Universit¨at–
Gesamthochschule Paderborn, Paderborn, M¨unchen, Apr.
1994.

[5] K. Gresser. An event model for deadline verification of hard
real–time systems. InProc. Fifth Euromicro Workshop on
Real Time Systems, pages 118–123, Oulu, Finland, June 1993.
IEEE.

[6] A. Muth, F. Fischer, T. Hopfner, T. Kolloch, S. Petters, and
S. Rudolph. Implementation of a CAN controller and monitor
application on the rapid prototyping platform REAR. Techni-
cal report, Lehrstuhl f¨ur Prozessrechner, Technische Univer-
sität München, Oct. 1997.

[7] R. B. Ortega and G. Borriello. Communication synthesis
for embedded systems with global considerations. InFifth
International Workshop on Hardware/Software Codesign —
Codes/Cashe ’97, pages 69–73, Braunschweig, Germany, 24–
26 Mar. 1997. IEEE, IEEE Computer Society Press.

[8] Philips Semiconductors, Eindhoven, The Netherlands.
PCA82C200, Stand–alone CAN Controller, Product Specifi-
cation, 1992.

